Stromatolithe in der Tiefsee
Forscherteam entdeckt Fossilien in 730 Metern Tiefe
Stromatolithe zählen mit 3,5 Millionen Jahren zu den ältesten Fossilien. Die Kalkablagerungen kamen allerdings bisher lediglich in Flachmeeren mit Wassertiefen bis zu zehn Metern vor. Denn wachsen können die Kalklagen nur, wenn lichtabhängige und Photosynthese betreibende Mikroorganismen beteiligt sind. Eine Studie von Geowissenschaftlerinnen und -wissenschaftlern aus Deutschland, Österreich und den USA zeigt, dass mit Hilfe von lichtunabhängigen, Chemosynthese betreibenden Mikroben Stromatolithe auch am Meeresboden in 731 Meter Wassertiefe wachsen können. Ihre Ergebnisse haben Tobias Himmler vom MARUM – Zentrum für Marine Umweltwissenschaften der Universität Bremen und sein Autorenteam jetzt in der Zeitschrift Geology veröffentlicht.
Bremer Geowissenschaftlerinnen und -wissenschaftler haben bei einer Expedition im Arabischen Meer vor der Küste Pakistans domartig aufgewölbte Mikrobenmatten an Methanaustritten in 730 Meter Wassertiefe entdeckt. Mit Hilfe des Greifarms von Tauchroboter MARUM-QUEST 4000 konnten sie einen etwa 40 Zentimeter hohen Kalkdom bergen. In seinem Inneren fand das Team fein laminierte und ebenfalls gewölbte Kalksteinstrukturen, die ursprünglich von den Mikrobenmatten bedeckt waren.
Diese Mikroben wurden am MARUM genauer geochemisch untersucht. Das Ergebnis: Am Bau der so genannten Stromatolithe sind methanabbauende marine Mikroorganismen, die Archaeen, beteiligt. Im griechischen Ursprung des Namens verbirgt sich bereits die Form der Kalkhügel: Das altgriechische stroma steht für Decke, lithos für Stein. „Anders als die im Flachmeer lebenden photosynthese-betreibende Mikroben, die Energie für ihren Stoffwechsel aus Sonnenstrahlen gewinnen, benutzen diese Mikroben in der Tiefsee Energie, die beim Abbau von Methan entsteht: In der Dunkelheit betreiben sie Chemosynthese“, berichtet Gerhard Bohrmann vom MARUM
Auf dem Meeresboden lebende Bakterien verwandeln den Schwefelwasserstoff, der beim Methanabbau entsteht. „Faserbündel dieser sulfidoxidierenden Bakterien konnten wir in Gesteinsdünnschliffen unter dem Mikroskop identifizieren“, berichtet Dr. Tobias Himmler, Erstautor der Studie. „Wie diese Bündel erhalten sind, ist außergewöhnlich. Da die Bakterien im Arabischen Meer in dieser Wassertiefe kaum freier Sauerstoff zur Verfügung haben, nutzen sie wahrscheinlich Nitrat anstelle von Sauerstoff, was die Kalkbildung begünstigt“, ergänzt Prof. Dr. Jörn Peckmann von der Universität Hamburg.
Ihre Vermutung bekräftigt ein geochemisches Modell, das Kalkbildung durch den Chemosynthese basierten Stoffwechsel der Mikroben belegt. Daraus folgern die Forschenden, dass im Gegensatz zu den bisher bekannten Photosynthese betreibenden Mikroben auch lichtunabhängige Chemosynthese basierte Mikroben Stromatolithe aufbauen können – und zwar auch in der Tiefsee.
Stromatolithe sind die häufigsten Fossilien in Gesteinsformationen, die älter als 541 Millionen Jahre sind. Ähnlich wie im heutigen Arabischen Meer gab es in den Meeren vor dieser Zeit, im so genannten Präkambrium, nur wenig Sauerstoff im Wasser. Die Entdeckung der auf Chemosynthese basierenden Stromatolithe im Arabischen Meer liefert neue Erkenntnisse darüber, wie diese alten Fossilien entstanden sein könnten. „Bisher kannte man nur Photosynthese basierte Stromatolithe, zum Beispiel von den Bahamas oder der Shark Bay an der Westküste Australiens. Diese unterscheiden sich, im Gegensatz zu den Chemosynthese basierten Stromatolithe, im Aufbau und ihrer internen Struktur von vielen präkambrischen Stromatolithen“, erklärt Tobias Himmler. Die Forschenden spekulieren daher darauf, dass Chemosynthese häufiger als bisher angenommen zum Wachstum der Stromatolithe im Präkambrium vor mehr als 541 Millionen Jahren beigetragen hat.
Quelle: MARUM – Zentrum für Marine Umweltwissenschaften an der Universität Bremen