Forscher gehen Recycling von Erdplatten vor Neuseeland auf den Grund
Entwicklungen im Erdinneren sind für Forscher oft schwer zu verfolgen. Ein internationales Team von Wissenschaftlern unter Beteiligung des Geozentrums Nordbayern an der Friedrich-Alexander-Universität Erlangen Nürnberg (FAU) und des GEOMAR Helmholtz-Zentrums für Ozeanforschung Kiel konnte anhand von Proben vom Meeresboden des Pazifiks Rückschlüsse auf die Bewegung abgetauchter Erdplatten in bis zu 100 Kilometer Tiefe ziehen – und so einige Fragen rund um die Geschichte der Erdplatten nördlich von Neuseeland beantworten. Die Studie ist jetzt in der internationalen Fachzeitschrift Nature Communications erschienen.
Etwa 1000 Kilometer nördlich von Neuseeland liegt die Kermadec-Inselgruppe im Pazifischen Ozean. Zu ihr gehört auch eine lange Kette dicht beieinanderstehender Unterwasservulkane. Sie alle sitzen auf dem östlichen Rand der australischen Erdplatte, die hier am sogenannten Kermadec-Graben endet. Weiter östlich schließt sich die Pazifische Erdplatte an, die sich aber mit einer Geschwindigkeit von 5 bis 24 Zentimeter pro Jahr nach Westen bewegt und im Kermadec-Graben unter die Australische Platte abtaucht. Fachleute sprechen dabei von einer Subduktionszone.
Eine Gruppe von Wissenschaftlern aus Neuseeland, Australien und England sowie vom Geozentrum Nordbayern und vom GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel konnte jetzt nachweisen, dass Vulkanketten in Subduktionsgebieten Aufschluss über das Ausmaß abgetauchter Erdplatten geben können. Dadurch können einige Prozesse in der Subduktionszone vor Neuseeland genauer erklärt werden. Die Ergebnisse tragen außerdem dazu bei, die Plattentektonik der Erde generell besser zu verstehen und Erdbebengebiete, wie beispielsweise vor Neuseeland, besser einschätzen zu können. „Unsere Untersuchungen zeigen, dass selbst eine 20 Kilometer dicke ozeanische Kruste verschluckt werden kann und dass diese verschluckte Kruste den Vulkanismus an der Oberfläche beeinflusst“, erläutert Co-Autor Prof. Dr. Karsten Haase, Lehrstuhl für Endogene Geodynamik am GeoZentrum Nordbayern an der FAU. Die Studie ist jetzt in der internationalen Fachzeitschrift Nature Communications erschienen.
Für ihre Studie haben sich die Wissenschaftler eine Besonderheit der Pazifischen Erdplatte zunutze gemacht. Sie ist nordöstlich von Neuseeland durch eine 15 bis 23 Kilometer hohe erstarrte Vulkankruste verdickt, das sogenannte Hikurangi-Plateau. Wenn die Pazifische Platte nun unter die australische Platte abtaucht, kommt es in diesem verdickten Bereich zu besonders großer Reibung. Abtauchende Teile des Hikurangi-Plateaus zerbrechen hierbei und steigen aufgrund der dort herrschenden Druck- und Temperaturverhältnisse in den darüber liegenden Mantelkeil. Dort ist dieses Gesteinsgemisch an der Magmenentstehung der Kermadec-Vulkane beteiligt. „Dabei bleibt die besondere chemische Signatur des Hikurangi-Gesteins jedoch erhalten“, erklärt Prof. Dr. Kaj Hoernle vom GEOMAR, Co-Autor der Studie. „Wir haben Proben aus der Magmaschicht am Meeresboden mit geophysikalischen und geochemischen Methoden analysiert und konnten so ermitteln, wo und in welchem Ausmaß sich das Hikurangi-Plateau unter die Kontinentalplatte geschoben hat.“
Das Hikurangi-Plateau liegt ca. 3500 bzw. 5000 Kilometer von zwei weiteren großen vulkanischen Blöcken, dem Manihiki- und dem Ontong Java-Plateau entfernt. Man vermutet, dass diese Plateaus vor 120 Millionen Jahren durch einen ozeanischen Megavulkan innerhalb von wenigen Millionen Jahren entstanden sind und ein zusammenhängendes Vulkanplateau bildeten, welches ein Prozent der Erdoberfläche bedeckt hat. Durch spätere Bewegungen des Ozeanbodens ist dieses Mega-Plateau in drei Teile zerbrochen. Die Umrisse der Plateaus lassen sich theoretisch wie Puzzleteile zusammenfügen. Allerdings fehlte bisher ein signifikantes Stück, um Hikurangi mit Manihiki und Ontong Java zu verbinden. „Da wir auch in umliegenden Gebieten Vulkane beprobten und die neuseeländischen Kollegen umfangreiche geophysikalische Daten erhoben haben, konnten wir das vermisste Stück nun quasi als Nebenprodukt dieser multidisziplinären Forschung unter den südlichen Kermadec-Vulkanen identifizieren“, sagt Dr. Folkmar Hauff, ebenfalls Geologe am GEOMAR und Co-Autor der Studie.
„Die aus dieser Studie gewonnenen Erkenntnisse stellen ein weiteres Mosaiksteinchen zum Gesamtverständnis des Systems Erde dar und haben uns ferner gezeigt, dass wir mit unseren hochpräzisen geochemischen Analyseverfahren in der Lage sind, Prozesse, die sich im tiefen Erdinneren abspielen, quasi aus der Ferne zu erkunden“, sagt Prof. Hoernle.
Quelle: GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel