Flugfähiges Feuchte-Messgerät zur Klimaforschung in den Wolken
Kaum taucht das Forschungsflugzeug HALO in den kilometerhohen Wolkenturm über dem brasilianischen Regenwald ein, schwindet den Forschern die Sicht – doch die Messinstrumente arbeiten auf Hochtouren. Mit an Bord: HAI. Ein neues, hochgenaues Feuchte-Messgerät der Physikalisch-Technischen Bundesanstalt (PTB). Der Senkrechtstarter unter den Feuchte-Messgeräten ist erst vor kurzem von Metrologen (Metrologie = Wissenschaft vom Messen) speziell für den Einsatz in Flugzeugen und in Wolken entwickelt worden und hat doch schon vier Forschungskampagnen mit mehr als 300 Stunden Messeinsatz hinter sich. Als weltweit einziges Gerät kann es zeitgleich und präzise ermitteln, welcher Anteil des Wassers in der Atmosphäre kondensiert als Tropfen oder Eis vorliegt, und wie viel als Dampf. Diese Daten helfen, natürliche und menschengemachte Wolkenbildungsprozesse und deren Einfluss auf das Klima besser zu verstehen. HAI ist robust genug für den Feldeinsatz bei stark schwankenden Temperaturen und Drücken und ist gleichzeitig erstmals an die internationale Feuchteskala gekoppelt. Zudem muss es nicht zeitaufwendig kalibriert werden. Damit verbindet es auf einmalige Art angewandte Klimaforschung mit den höchsten Ansprüchen der Metrologie.
HAI steht für Hygrometer for Atmospheric Investigations. Sein jüngster Einsatz (im Rahmen der ACRIDICON-CHUVA-Mission) führte HAI auf eine groß angelegte Expedition, an der rund 60 deutsche, israelische und brasilianische Wissenschaftler beteiligt waren. An Bord von HALO, einem der modernsten Messflugzeuge für die Atmosphärenforschung – betrieben vom Deutschen Luft- und Raumfahrtzentrum – flog HAI immer wieder in die aufsteigenden Wolken über dem Amazonas-Regenwald hinein, um Proben zu nehmen. Die Forscher wollten unter anderem verstehen, welchen Einfluss die Luftverschmutzung über großen Städten oder Brandrodungsgebieten auf die Wolkenbildung hat.
Wasser ist das wichtigste Treibhausgas und spielt auf vielerlei Art eine Rolle bei der Klimaentwicklung. In erster Linie beschatten und kühlen Wolken die Erdoberfläche, gleichzeitig wirken sie wie eine Isolationsschicht, die die terrestrische Wärmestrahlung nicht in den Weltraum entweichen lässt. Der gesamte globale Wasserkreislauf beruht auf sich erwärmender und wieder abkühlender Luftfeuchtigkeit. Darüber hinaus dienen Feuchtewerte als Korrekturfaktor bei vielen anderen atmosphärischen Messungen. Dass Wasser das einflussreichste Treibhausgas ist, steht fest. Doch seine Wirkung in Zahlen zu fassen, die dann in Modelle zur Klimaentwicklung einfließen können, ist sehr schwierig. Je nach Höhe der Wolken und je nach Zusammensetzung – sie können aus Dampf, Tropfen und Eis in wechselnden Mengenverhältnissen bestehen– kann ihre Wirkung sehr unterschiedlich ausfallen. Auch die Messung der verschiedenen Wasser-Phasen ist heikel, denn bereits die Probennahme kann den Aggregatzustand entscheidend verändern, wenn beispielsweise Wasserdampf durch Abkühlung bei der Probennahme bereits auf dem Weg zum Messgerät zu Tropfen kondensiert.
Wissenschaftler der PTB haben dieses Problem mit dem Multiphasen-Wassersensor HAI gelöst. Er ermittelt simultan, wie viel Wasserdampf und wie viel Wasser kondensiert in der Luft vorhanden ist: Eine robuste, offene, aerodynamische Messzelle außerhalb des Flugzeugrumpfes misst direkt den gasförmigen Wasserdampfgehalt der durchströmenden Luft. Eine weitere Zweikanal-Messeinheit befindet sich innerhalb des Flugzeuges am Ende einer beheizten Probennahmeleitung. Dort ermitteln zwei unabhängig voneinander arbeitende Sensoren den Gesamtwassergehalt der Probe. Die Differenz aus Gesamtwasser- und Gasphasenmessung erlaubt, zeitgleich den Gehalt an kondensiertem Wasser zu bestimmen.
Quelle: Physikalisch-Technische Bundesanstalt (PTB)