Zucker und Schleime, die Rifforganismen als Nahrung dienen
Der LMU-Forscher Dr. Christian Wild hat zusammen mit seiner Arbeitsgruppe CORE (Coral Reef Ecology) von der Fakultät für Geowissenschaften die Korallenriffe im nördlichen Roten Meer bei Expeditionen untersucht – und damit eine bisher wenig untersuchte Unterwasserlandschaft betreten. „Es gab grosse biogeochemische Wissenslücken, weil hier bisher kaum Forschung in diese Richtung betrieben wurde“, sagt der Geobiologe. „Dabei gehören die Korallenriffe des Roten Meeres zum weltweit häufigsten Rifftyp, dem Saumriff. Die Erkenntnisse, die wir gewonnen und jetzt in mehreren aktuellen Publikationen veröffentlicht haben, lassen sich daher auf viele andere Riffe übertragen.“ Das Team um Wild konnte unter anderem zeigen, dass die Bedeckung des Meeresbodens durch unterschiedliche marine Organismen auch die Sauerstoffverfügbarkeit im Korallenriff unterschiedlich beeinflusst. Das kann sich negativ auf sauerstoff-empfindliche Riffbewohner auswirken, wie eine Nachfolgestudie offenbart hat. „Im Roten Meer konnten wir zudem einen unbekannten Stoffkreislauf nachweisen, der Mangelelemente wie Stickstoff, Phosphor und Eisen im sehr nährstoffarmen Ökoraum hält“, berichtet Wild. „Ausserdem konnten wir zeigen, dass die auch in Korallenriffen weit verbreitete Mangrovenqualle Cassiopea – die mit dem Schirm nach unten und nach oben gestreckten Tentakeln auf dem Meeresboden liegt – vergleichsweise grosse Mengen an Zucker und Schleimen abgibt, die einer Reihe von anderen Rifforganismen als Nahrung dienen und so einen bisher nicht beschriebenen Energiefluss vom Meeresboden in die Wassersäule über Korallenriffen bewirken.“
Wild und sein Team verbrachten in den letzten vier Jahren insgesamt mehrere Monate am und im nördlichen Roten Meer, um die bislang kaum untersuchten biogeochemischen Prozesse in den dortigen Korallenriffen zu erforschen. Vorherrschend sind hier Saumriffe, die sich in direkter Küstennähe und oft über viele Kilometer Länge entlang der Küste des Festlandes erstrecken. Saumriffe sind der weltweit häufigste Rifftyp und kommen nicht nur im Roten Meer vor, sondern auch im Indischen Ozean, in Südostasien und in der Karibik. „Unsere Ergebnisse lassen sich also auch auf viele andere Riffe übertragen“, betont Wild. Besonders lohnend wurde der Einsatz durch sogenannte in-situ-Logger. Das sind wasserdichte Sensoren, die mit einem Chip ausgestattet sind und in kurzen Zeitabständen bestimmte Parameter im Meerwasser messen – und diese Information auch speichern. Die Logger werden nach ihrem Einsatz an Land ausgelesen und liefern dabei hochaufgelöste Daten direkt aus dem Feld.
So zeigten die Messungen mit diesen Geräten, dass die Bedeckung des Meeresbodens durch verschiedene marine Organismen – die benthische Gemeinschaft – die Verfügbarkeit von Sauerstoff in Korallenriffen unterschiedlich beeinflusst. Je mehr Algen in Korallenriffen vorkommen, desto geringer sind offenbar die mittleren Sauerstoffkonzentrationen im Wasser direkt über dem Riff. Das liegt wohl daran, dass die Riffalgen eine grosse Menge von Zucker und andere gelöste organische Substanzen abgeben. Diese organischen Nährstoffe werden sehr schnell von Mikroorganismen abgebaut, was zu einer Verringerung der Sauerstoffkonzentration führt. „Unsere Vermutung, dass dies negative Auswirkungen auf Korallen und andere Sauerstoff-empfindlichen Rifforganismen haben könnte, hat sich dann tatsächlich in einer Nachfolgestudie bestätigt“, berichtet Wild. „Wir konnten zeigen, dass Korallen vor allem im direkten Kontakt mit Riffalgen geschädigt werden.“
Doch auch die Korallen selbst produzieren organisches Material: So zeigte sich, dass alle dominanten Steinkorallen vor allem Schleime in ihr Umgebungswasser abgeben, die dann bis zu 80 Minuten mit der Oberfläche der Korallen verbunden bleiben. „Aus unseren Vergleichsstudien vom australischen Great Barriere Riff wissen wir, dass das sehr lange ist“, sagt Wild. Die klebrigen Schleime sammeln – ähnlich einer Fliegenfalle – kleine Partikel wie Algenfragmente, Zooplankton und kleine Sandkörnchen aus der Wassersäule ein und werden dadurch sehr schwer. Lösen sich die angereicherten Schleimfäden schliesslich, sinken sie in kürzester Entfernung – weniger als fünf Meter – ab und werden schnell von Mikroorgnismen in der Wassersäule und den Riffsanden abgebaut. „Auf diesem Weg werden regenerierte Nährstoffe wie Stickstoff, Phosphor und Eisen freigesetzt, die dann sehr schnell wieder von Photosynthese betreibenden Organismen, den sogenannten Primärproduzenten, aufgenommen werden. So werden diese Mangelelemente im extrem nährstoffarmen Ökosystem Korallenriff gehalten“, sagt Wild. „Mit dieser Studie haben wir einen bisher unbekannten kurzgeschlossenen Stoffkreislauf beschrieben, der über die Abgabe von Schleimen durch Korallen im Roten Meer funktioniert.“
Die Mangrovenqualle Cassiopea schliesslich ist der Schlüssel zu einer weiteren neuen Verknüpfung zwischen den Nahrungsketten im Riff, die die Forscher nachweisen konnten. Diese auch in Korallenriffen oft beobachtete Quallenart liegt mit dem Schirm nach unten und nach oben gestreckten Tentakeln auf dem Meeresboden. Die von Cassiopea abgegebenen Zucker und Schleime werden dann von Mikroorganismen, aber auch von kleinen Schwebegarnelen aufgenommen, wie das Team um Wild mit Hilfe von Markierungsexperimenten mit stabilen Isotopen zeigen konnte. Diese Studie offenbarte einen bisher nicht beschriebenen Fluss von Energie vom Meeresboden in die Wassersäule in Korallenriffökosystemen und betont einmal mehr die Komplexität der Wechselbeziehungen in solchen Lebensräumen.
„Nun wollen wir im Roten Meer auch die chemische Zusammensetzung und Dynamik der Abgabe von organischem Material durch Riffalgen verstehen“, sagt Wild. „Uns geht es vor allem um den Zusammenhang zwischen der Verfügbarkeit an anorganischen Nährstoffen wie Nitrat und Phosphat sowie der Abgabe von Zuckern durch die Algen und einer anschliessenden Stimulation der mikrobiellen Aktivität. Denn wir beobachten im Moment, dass aus Massentourismus und Marikultur immer mehr Düngemittel in die küstennahen Korallenriffe eingetragen werden und dort nicht nur das Wachstum, sondern auch den Stoffwechsel der Riffalgen begünstigen, so dass es aus mehreren Gründen zu einem sogenannten Regimewechsel kommen kann. Das ist der Übergang von korallendominierten zu algendominierten Riffen, der inzwischen von vielen anderen Korallenriffen gemeldet wird.“ (suwe)
Quelle: Ludwig-Maximilians-Universität München